Vlasov-Poisson#

In this notebook we present a multithreaded version of the Vlasov-Poisson system in 1D1D phase space. Equations are solved numerically using semi-lagrangian method.

Semi-Lagrangian method#

Let us consider an abstract scalar advection equation of the form $\( \frac{\partial f}{\partial t}+ a(x, t) \cdot \nabla f = 0. \)\( The characteristic curves associated to this equation are the solutions of the ordinary differential equations \)\( \frac{dX}{dt} = a(X(t), t) \)\( We shall denote by \)X(t, x, s)\( the unique solution of this equation associated to the initial condition \)X(s) = x$.

The classical semi-Lagrangian method is based on a backtracking of characteristics. Two steps are needed to update the distribution function \(f^{n+1}\) at \(t^{n+1}\) from its value \(f^n\) at time \(t^n\) :

  1. For each grid point \(x_i\) compute \(X(t^n; x_i, t^{n+1})\) the value of the characteristic at \(t^n\) which takes the value \(x_i\) at \(t^{n+1}\).

  2. As the distribution solution of first equation verifies $\(f^{n+1}(x_i) = f^n(X(t^n; x_i, t^{n+1})),\)\( we obtain the desired value of \)f^{n+1}(x_i)\( by computing \)f^n(X(t^n;x_i,t^{n+1})\( by interpolation as \)X(t^n; x_i, t^{n+1})$ is in general not a grid point.

Eric Sonnendrücker - Numerical methods for the Vlasov equations

import sys

if sys.platform == "darwin":
    %env CC='gcc-10'

Bspline#

The bspline function return the value at x in [0,1[ of the B-spline with integer nodes of degree p with support starting at j. Implemented recursively using the de Boor’s recursion formula

De Boor’s Algorithm - Wikipedia

import numpy as np
from scipy.fftpack import fft, ifft 

def bspline_python(p, j, x):
        """Return the value at x in [0,1[ of the B-spline with 
        integer nodes of degree p with support starting at j.
        Implemented recursively using the de Boor's recursion formula"""
        assert (x >= 0.0) & (x <= 1.0)
        assert (type(p) == int) & (type(j) == int)
        if p == 0:
            if j == 0:
                return 1.0
            else:
                return 0.0
        else:
            w = (x - j) / p
            w1 = (x - j - 1) / p
        return w * bspline_python(p - 1, j, x) + (1 - w1) * bspline_python(p - 1, j + 1, x)
class Advection:
    
    """ Class to compute BSL advection of 1d function """
    
    def __init__(self, p, xmin, xmax, ncells, bspline):
        assert p & 1 == 1  # check that p is odd
        self.p = p
        self.ncells = ncells
        # compute eigenvalues of degree p b-spline matrix
        self.modes = 2 * np.pi * np.arange(ncells) / ncells
        self.deltax = (xmax - xmin) / ncells
        self.bspline = bspline
        self.eig_bspl = bspline(p, -(p + 1) // 2, 0.0)
        for j in range(1, (p + 1) // 2):
            self.eig_bspl += bspline(p, j - (p + 1) // 2, 0.0) * 2 * np.cos(j * self.modes)
            
        self.eigalpha = np.zeros(ncells, dtype=complex)
    
    def __call__(self, f, alpha):
        """compute the interpolating spline of degree p of odd degree 
        of a function f on a periodic uniform mesh, at
        all points xi-alpha"""
        p = self.p
        assert (np.size(f) == self.ncells)
        # compute eigenvalues of cubic splines evaluated at displaced points
        ishift = np.floor(-alpha / self.deltax)
        beta = -ishift - alpha / self.deltax
        self.eigalpha.fill(0.)
        for j in range(-(p-1)//2, (p+1)//2 + 1):
            self.eigalpha += self.bspline(p, j-(p+1)//2, beta) * np.exp((ishift+j)*1j*self.modes)
            
        # compute interpolating spline using fft and properties of circulant matrices
        return np.real(ifft(fft(f) * self.eigalpha / self.eig_bspl))
def interpolation_test(bspline):
    """ Test to check interpolation"""
    n = 64
    cs = Advection(3,0,1,n, bspline)
    x = np.linspace(0,1,n, endpoint=False)
    f = np.sin(x*4*np.pi)
    alpha = 0.2
    return np.allclose(np.sin((x-alpha)*4*np.pi), cs(f, alpha))
    

interpolation_test(bspline_python)
True

If we profile the code we can see that a lot of time is spent in bspline calls

Accelerate with Fortran#

%load_ext fortranmagic
%%fortran
recursive function bspline_fortran(p, j, x) result(res)
    integer :: p, j
    real(8) :: x, w, w1
    real(8) :: res

    if (p == 0) then
        if (j == 0) then
            res = 1.0
            return
        else
            res = 0.0
            return
        end if
    else
        w = (x - j) / p
        w1 = (x - j - 1) / p
    end if
    
    res = w * bspline_fortran(p-1,j,x) &
    +(1-w1)*bspline_fortran(p-1,j+1,x)

end function bspline_fortran
interpolation_test(bspline_fortran)
True

Numba#

Create a optimized function of bspline python function with Numba. Call it bspline_numba.

from numba import jit,  int32, float64
from scipy.fftpack import fft, ifft

@jit("float64(int32,int32,float64)",nopython=True)
def bspline_numba(p, j, x):
    
        """Return the value at x in [0,1[ of the B-spline with 
        integer nodes of degree p with support starting at j.
        Implemented recursively using the de Boor's recursion formula"""
        
        assert ((x >= 0.0) & (x <= 1.0))
        if p == 0:
            if j == 0:
                return 1.0
            else:
                return 0.0
        else:
            w = (x-j)/p
            w1 = (x-j-1)/p
        return w * bspline_numba(p-1,j,x)+(1-w1)*bspline_numba(p-1,j+1,x)
interpolation_test(bspline_numba)
True

Pythran#

import pythran

%load_ext pythran.magic
%%pythran

import numpy as np

#pythran export bspline_pythran(int,int,float64)
def bspline_pythran(p, j, x):
    if p == 0:
        if j == 0:
            return 1.0
        else:
            return 0.0
    else:
        w = (x-j)/p
        w1 = (x-j-1)/p
    return w * bspline_pythran(p-1,j,x)+(1-w1)*bspline_pythran(p-1,j+1,x)
interpolation_test(bspline_pythran)
True

Cython#

%load_ext cython
%%cython -a
def bspline_cython(p, j, x):
        """Return the value at x in [0,1[ of the B-spline with 
        integer nodes of degree p with support starting at j.
        Implemented recursively using the de Boor's recursion formula"""
        assert (x >= 0.0) & (x <= 1.0)
        assert (type(p) == int) & (type(j) == int)
        if p == 0:
            if j == 0:
                return 1.0
            else:
                return 0.0
        else:
            w = (x - j) / p
            w1 = (x - j - 1) / p
        return w * bspline_cython(p - 1, j, x) + (1 - w1) * bspline_cython(p - 1, j + 1, x)
Cython: _cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86.pyx

Generated by Cython 3.0.11

Yellow lines hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.

+01: def bspline_cython(p, j, x):
/* Python wrapper */
static PyObject *__pyx_pw_54_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86_1bspline_cython(PyObject *__pyx_self, 
#if CYTHON_METH_FASTCALL
PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
#else
PyObject *__pyx_args, PyObject *__pyx_kwds
#endif
); /*proto*/
PyDoc_STRVAR(__pyx_doc_54_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86_bspline_cython, "Return the value at x in [0,1[ of the B-spline with \n        integer nodes of degree p with support starting at j.\n        Implemented recursively using the de Boor's recursion formula");
static PyMethodDef __pyx_mdef_54_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86_1bspline_cython = {"bspline_cython", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_54_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86_1bspline_cython, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_54_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86_bspline_cython};
static PyObject *__pyx_pw_54_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86_1bspline_cython(PyObject *__pyx_self, 
#if CYTHON_METH_FASTCALL
PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
#else
PyObject *__pyx_args, PyObject *__pyx_kwds
#endif
) {
  PyObject *__pyx_v_p = 0;
  PyObject *__pyx_v_j = 0;
  PyObject *__pyx_v_x = 0;
  #if !CYTHON_METH_FASTCALL
  CYTHON_UNUSED Py_ssize_t __pyx_nargs;
  #endif
  CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
  PyObject *__pyx_r = 0;
  __Pyx_RefNannyDeclarations
  __Pyx_RefNannySetupContext("bspline_cython (wrapper)", 0);
  #if !CYTHON_METH_FASTCALL
  #if CYTHON_ASSUME_SAFE_MACROS
  __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
  #else
  __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
  #endif
  #endif
  __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
  {
    PyObject **__pyx_pyargnames[] = {&__pyx_n_s_p,&__pyx_n_s_j,&__pyx_n_s_x,0};
  PyObject* values[3] = {0,0,0};
    if (__pyx_kwds) {
      Py_ssize_t kw_args;
      switch (__pyx_nargs) {
        case  3: values[2] = __Pyx_Arg_FASTCALL(__pyx_args, 2);
        CYTHON_FALLTHROUGH;
        case  2: values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
        CYTHON_FALLTHROUGH;
        case  1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
        CYTHON_FALLTHROUGH;
        case  0: break;
        default: goto __pyx_L5_argtuple_error;
      }
      kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
      switch (__pyx_nargs) {
        case  0:
        if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_p)) != 0)) {
          (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
          kw_args--;
        }
        else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 1, __pyx_L3_error)
        else goto __pyx_L5_argtuple_error;
        CYTHON_FALLTHROUGH;
        case  1:
        if (likely((values[1] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_j)) != 0)) {
          (void)__Pyx_Arg_NewRef_FASTCALL(values[1]);
          kw_args--;
        }
        else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 1, __pyx_L3_error)
        else {
          __Pyx_RaiseArgtupleInvalid("bspline_cython", 1, 3, 3, 1); __PYX_ERR(0, 1, __pyx_L3_error)
        }
        CYTHON_FALLTHROUGH;
        case  2:
        if (likely((values[2] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_x)) != 0)) {
          (void)__Pyx_Arg_NewRef_FASTCALL(values[2]);
          kw_args--;
        }
        else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 1, __pyx_L3_error)
        else {
          __Pyx_RaiseArgtupleInvalid("bspline_cython", 1, 3, 3, 2); __PYX_ERR(0, 1, __pyx_L3_error)
        }
      }
      if (unlikely(kw_args > 0)) {
        const Py_ssize_t kwd_pos_args = __pyx_nargs;
        if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "bspline_cython") < 0)) __PYX_ERR(0, 1, __pyx_L3_error)
      }
    } else if (unlikely(__pyx_nargs != 3)) {
      goto __pyx_L5_argtuple_error;
    } else {
      values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
      values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
      values[2] = __Pyx_Arg_FASTCALL(__pyx_args, 2);
    }
    __pyx_v_p = values[0];
    __pyx_v_j = values[1];
    __pyx_v_x = values[2];
  }
  goto __pyx_L6_skip;
  __pyx_L5_argtuple_error:;
  __Pyx_RaiseArgtupleInvalid("bspline_cython", 1, 3, 3, __pyx_nargs); __PYX_ERR(0, 1, __pyx_L3_error)
  __pyx_L6_skip:;
  goto __pyx_L4_argument_unpacking_done;
  __pyx_L3_error:;
  {
    Py_ssize_t __pyx_temp;
    for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
      __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
    }
  }
  __Pyx_AddTraceback("_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86.bspline_cython", __pyx_clineno, __pyx_lineno, __pyx_filename);
  __Pyx_RefNannyFinishContext();
  return NULL;
  __pyx_L4_argument_unpacking_done:;
  __pyx_r = __pyx_pf_54_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86_bspline_cython(__pyx_self, __pyx_v_p, __pyx_v_j, __pyx_v_x);
  int __pyx_lineno = 0;
  const char *__pyx_filename = NULL;
  int __pyx_clineno = 0;

  /* function exit code */
  {
    Py_ssize_t __pyx_temp;
    for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
      __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
    }
  }
  __Pyx_RefNannyFinishContext();
  return __pyx_r;
}

static PyObject *__pyx_pf_54_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86_bspline_cython(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_p, PyObject *__pyx_v_j, PyObject *__pyx_v_x) {
  PyObject *__pyx_v_w = NULL;
  PyObject *__pyx_v_w1 = NULL;
  PyObject *__pyx_r = NULL;
/* … */
  /* function exit code */
  __pyx_L1_error:;
  __Pyx_XDECREF(__pyx_t_1);
  __Pyx_XDECREF(__pyx_t_2);
  __Pyx_XDECREF(__pyx_t_3);
  __Pyx_XDECREF(__pyx_t_5);
  __Pyx_XDECREF(__pyx_t_7);
  __Pyx_XDECREF(__pyx_t_8);
  __Pyx_XDECREF(__pyx_t_9);
  __Pyx_AddTraceback("_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86.bspline_cython", __pyx_clineno, __pyx_lineno, __pyx_filename);
  __pyx_r = NULL;
  __pyx_L0:;
  __Pyx_XDECREF(__pyx_v_w);
  __Pyx_XDECREF(__pyx_v_w1);
  __Pyx_XGIVEREF(__pyx_r);
  __Pyx_RefNannyFinishContext();
  return __pyx_r;
}
/* … */
  __pyx_tuple_ = PyTuple_Pack(5, __pyx_n_s_p, __pyx_n_s_j, __pyx_n_s_x, __pyx_n_s_w, __pyx_n_s_w1); if (unlikely(!__pyx_tuple_)) __PYX_ERR(0, 1, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_tuple_);
  __Pyx_GIVEREF(__pyx_tuple_);
/* … */
  __pyx_t_2 = __Pyx_CyFunction_New(&__pyx_mdef_54_cython_magic_8b355ddae92152cfa186643eafd1b2d5ada5bc86_1bspline_cython, 0, __pyx_n_s_bspline_cython, NULL, __pyx_n_s_cython_magic_8b355ddae92152cfa1, __pyx_d, ((PyObject *)__pyx_codeobj__2)); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_2);
  if (PyDict_SetItem(__pyx_d, __pyx_n_s_bspline_cython, __pyx_t_2) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
  __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
  __pyx_t_2 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_2);
  if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_2) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
  __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 02:         """Return the value at x in [0,1[ of the B-spline with 
 03:         integer nodes of degree p with support starting at j.
 04:         Implemented recursively using the de Boor's recursion formula"""
+05:         assert (x >= 0.0) & (x <= 1.0)
  #ifndef CYTHON_WITHOUT_ASSERTIONS
  if (unlikely(__pyx_assertions_enabled())) {
    __pyx_t_1 = PyObject_RichCompare(__pyx_v_x, __pyx_float_0_0, Py_GE); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 5, __pyx_L1_error)
    __pyx_t_2 = PyObject_RichCompare(__pyx_v_x, __pyx_float_1_0, Py_LE); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 5, __pyx_L1_error)
    __pyx_t_3 = PyNumber_And(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 5, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_3);
    __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
    __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
    __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely((__pyx_t_4 < 0))) __PYX_ERR(0, 5, __pyx_L1_error)
    __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
    if (unlikely(!__pyx_t_4)) {
      __Pyx_Raise(__pyx_builtin_AssertionError, 0, 0, 0);
      __PYX_ERR(0, 5, __pyx_L1_error)
    }
  }
  #else
  if ((1)); else __PYX_ERR(0, 5, __pyx_L1_error)
  #endif
+06:         assert (type(p) == int) & (type(j) == int)
  #ifndef CYTHON_WITHOUT_ASSERTIONS
  if (unlikely(__pyx_assertions_enabled())) {
    __pyx_t_3 = PyObject_RichCompare(((PyObject *)Py_TYPE(__pyx_v_p)), ((PyObject *)(&PyInt_Type)), Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 6, __pyx_L1_error)
    __pyx_t_2 = PyObject_RichCompare(((PyObject *)Py_TYPE(__pyx_v_j)), ((PyObject *)(&PyInt_Type)), Py_EQ); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 6, __pyx_L1_error)
    __pyx_t_1 = PyNumber_And(__pyx_t_3, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 6, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_1);
    __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
    __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
    __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely((__pyx_t_4 < 0))) __PYX_ERR(0, 6, __pyx_L1_error)
    __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
    if (unlikely(!__pyx_t_4)) {
      __Pyx_Raise(__pyx_builtin_AssertionError, 0, 0, 0);
      __PYX_ERR(0, 6, __pyx_L1_error)
    }
  }
  #else
  if ((1)); else __PYX_ERR(0, 6, __pyx_L1_error)
  #endif
+07:         if p == 0:
  __pyx_t_4 = (__Pyx_PyInt_BoolEqObjC(__pyx_v_p, __pyx_int_0, 0, 0)); if (unlikely((__pyx_t_4 < 0))) __PYX_ERR(0, 7, __pyx_L1_error)
  if (__pyx_t_4) {
/* … */
  }
+08:             if j == 0:
    __pyx_t_4 = (__Pyx_PyInt_BoolEqObjC(__pyx_v_j, __pyx_int_0, 0, 0)); if (unlikely((__pyx_t_4 < 0))) __PYX_ERR(0, 8, __pyx_L1_error)
    if (__pyx_t_4) {
/* … */
    }
+09:                 return 1.0
      __Pyx_XDECREF(__pyx_r);
      __Pyx_INCREF(__pyx_float_1_0);
      __pyx_r = __pyx_float_1_0;
      goto __pyx_L0;
 10:             else:
+11:                 return 0.0
    /*else*/ {
      __Pyx_XDECREF(__pyx_r);
      __Pyx_INCREF(__pyx_float_0_0);
      __pyx_r = __pyx_float_0_0;
      goto __pyx_L0;
    }
 12:         else:
+13:             w = (x - j) / p
  /*else*/ {
    __pyx_t_1 = PyNumber_Subtract(__pyx_v_x, __pyx_v_j); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 13, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_1);
    __pyx_t_2 = __Pyx_PyNumber_Divide(__pyx_t_1, __pyx_v_p); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 13, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_2);
    __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
    __pyx_v_w = __pyx_t_2;
    __pyx_t_2 = 0;
+14:             w1 = (x - j - 1) / p
    __pyx_t_2 = PyNumber_Subtract(__pyx_v_x, __pyx_v_j); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 14, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_2);
    __pyx_t_1 = __Pyx_PyInt_SubtractObjC(__pyx_t_2, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 14, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_1);
    __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
    __pyx_t_2 = __Pyx_PyNumber_Divide(__pyx_t_1, __pyx_v_p); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 14, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_2);
    __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
    __pyx_v_w1 = __pyx_t_2;
    __pyx_t_2 = 0;
  }
+15:         return w * bspline_cython(p - 1, j, x) + (1 - w1) * bspline_cython(p - 1, j + 1, x)
  __Pyx_XDECREF(__pyx_r);
  __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_bspline_cython); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 15, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_1);
  __pyx_t_3 = __Pyx_PyInt_SubtractObjC(__pyx_v_p, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 15, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_3);
  __pyx_t_5 = NULL;
  __pyx_t_6 = 0;
  #if CYTHON_UNPACK_METHODS
  if (unlikely(PyMethod_Check(__pyx_t_1))) {
    __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_1);
    if (likely(__pyx_t_5)) {
      PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1);
      __Pyx_INCREF(__pyx_t_5);
      __Pyx_INCREF(function);
      __Pyx_DECREF_SET(__pyx_t_1, function);
      __pyx_t_6 = 1;
    }
  }
  #endif
  {
    PyObject *__pyx_callargs[4] = {__pyx_t_5, __pyx_t_3, __pyx_v_j, __pyx_v_x};
    __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_1, __pyx_callargs+1-__pyx_t_6, 3+__pyx_t_6);
    __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0;
    __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
    if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 15, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_2);
    __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
  }
  __pyx_t_1 = PyNumber_Multiply(__pyx_v_w, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 15, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_1);
  __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
  __pyx_t_2 = __Pyx_PyInt_SubtractCObj(__pyx_int_1, __pyx_v_w1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 15, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_2);
  __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_bspline_cython); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 15, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_5);
  __pyx_t_7 = __Pyx_PyInt_SubtractObjC(__pyx_v_p, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 15, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_7);
  __pyx_t_8 = __Pyx_PyInt_AddObjC(__pyx_v_j, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 15, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_8);
  __pyx_t_9 = NULL;
  __pyx_t_6 = 0;
  #if CYTHON_UNPACK_METHODS
  if (unlikely(PyMethod_Check(__pyx_t_5))) {
    __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_5);
    if (likely(__pyx_t_9)) {
      PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5);
      __Pyx_INCREF(__pyx_t_9);
      __Pyx_INCREF(function);
      __Pyx_DECREF_SET(__pyx_t_5, function);
      __pyx_t_6 = 1;
    }
  }
  #endif
  {
    PyObject *__pyx_callargs[4] = {__pyx_t_9, __pyx_t_7, __pyx_t_8, __pyx_v_x};
    __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_5, __pyx_callargs+1-__pyx_t_6, 3+__pyx_t_6);
    __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0;
    __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
    __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
    if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 15, __pyx_L1_error)
    __Pyx_GOTREF(__pyx_t_3);
    __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
  }
  __pyx_t_5 = PyNumber_Multiply(__pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 15, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_5);
  __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
  __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
  __pyx_t_3 = PyNumber_Add(__pyx_t_1, __pyx_t_5); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 15, __pyx_L1_error)
  __Pyx_GOTREF(__pyx_t_3);
  __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
  __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
  __pyx_r = __pyx_t_3;
  __pyx_t_3 = 0;
  goto __pyx_L0;
%%cython
import cython

@cython.cdivision(True)
cpdef double bspline_cython(int p, int j, double x):
        """Return the value at x in [0,1[ of the B-spline with 
        integer nodes of degree p with support starting at j.
        Implemented recursively using the de Boor's recursion formula"""
        cdef double w, w1
        if p == 0:
            if j == 0:
                return 1.0
            else:
                return 0.0
        else:
            w = (x - j) / p
            w1 = (x - j - 1) / p
        return w * bspline_cython(p-1,j,x)+(1-w1)*bspline_cython(p-1,j+1,x)
interpolation_test(bspline_cython)
True
%config InlineBackend.figure_format = 'retina'
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['figure.figsize'] = (11,7)
from tqdm.notebook import tqdm
from collections import defaultdict

Mrange = (2 ** np.arange(6, 12)).astype(int)
opts = [bspline_fortran, bspline_pythran, bspline_cython, bspline_numba]

times = defaultdict(list)
for M in tqdm(Mrange):
    x = np.linspace(0, 1, M, endpoint=False)
    for opt in opts:
        f = np.sin(x*4*np.pi)
        cs = Advection(5, 0, 1, M, opt)
    
        alpha = 0.1
        ts = %timeit -q -n 100 -o cs(f, alpha)
        times[opt.__name__].append(ts.best)
for o, t in times.items():
    plt.loglog(Mrange, t, label=o)
    
plt.legend(loc='lower right')
plt.xlabel('Number of points')
plt.ylabel('Execution Time (s)');
_images/5fc851dcff1b27bc37ee770c1c652d7026fb63485ad11d6109e7c8a5ed06d178.png
%%cython
import cython
import numpy as np
cimport numpy as np
from scipy.fftpack import fft, ifft

@cython.cdivision(True)
cdef double bspline_cython(int p, int j, double x):
        """Return the value at x in [0,1[ of the B-spline with 
        integer nodes of degree p with support starting at j.
        Implemented recursively using the de Boor's recursion formula"""
        cdef double w, w1
        if p == 0:
            if j == 0:
                return 1.0
            else:
                return 0.0
        else:
            w = (x - j) / p
            w1 = (x - j - 1) / p
        return w * bspline_cython(p-1,j,x)+(1-w1)*bspline_cython(p-1,j+1,x)

class BSplineCython:
    
    def __init__(self, p, xmin, xmax, ncells):
        self.p = p
        self.ncells = ncells
        # compute eigenvalues of degree p b-spline matrix
        self.modes = 2 * np.pi * np.arange(ncells) / ncells
        self.deltax = (xmax - xmin) / ncells
        
        self.eig_bspl = bspline_cython(p,-(p+1)//2, 0.0)
        for j in range(1, (p + 1) // 2):
            self.eig_bspl += bspline_cython(p,j-(p+1)//2,0.0)*2*np.cos(j*self.modes)
            
        self.eigalpha = np.zeros(ncells, dtype=complex)
    
    @cython.boundscheck(False)
    @cython.wraparound(False)
    def __call__(self,  f,  alpha):
        """compute the interpolating spline of degree p of odd degree 
        of a function f on a periodic uniform mesh, at
        all points xi-alpha"""
        cdef Py_ssize_t j
        cdef int p = self.p
        # compute eigenvalues of cubic splines evaluated at displaced points
        cdef int ishift = np.floor(-alpha / self.deltax)
        cdef double beta = -ishift - alpha / self.deltax
        self.eigalpha.fill(0)
        for j in range(-(p-1)//2, (p+1)//2+1):
            self.eigalpha += bspline_cython(p,j-(p+1)//2,beta)*np.exp((ishift+j)*1j*self.modes)
            
        # compute interpolating spline using fft and properties of circulant matrices
        return np.real(ifft(fft(f) * self.eigalpha / self.eig_bspl))
Content of stderr:
In file included from /usr/share/miniconda/envs/python-fortran/lib/python3.9/site-packages/numpy/_core/include/numpy/ndarraytypes.h:1909,
                 from /usr/share/miniconda/envs/python-fortran/lib/python3.9/site-packages/numpy/_core/include/numpy/ndarrayobject.h:12,
                 from /usr/share/miniconda/envs/python-fortran/lib/python3.9/site-packages/numpy/_core/include/numpy/arrayobject.h:5,
                 from /home/runner/.cache/ipython/cython/_cython_magic_a8089a1ad99d91f89ca852660308b28608e7549e.c:1250:
/usr/share/miniconda/envs/python-fortran/lib/python3.9/site-packages/numpy/_core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
   17 | #warning "Using deprecated NumPy API, disable it with " \
      |  ^~~~~~~
times["cython"] = []
for M in tqdm(Mrange):
    x = np.linspace(0, 1, M, endpoint=False)
    f = np.sin(x*4*np.pi)
    cs = BSplineCython(5, 0, 1, M )
    
    alpha = 0.1
    ts = %timeit -q -n 100 -o cs(f, alpha)
    times["cython"].append(ts.best)
for o, t in times.items():
    plt.loglog(Mrange, t, label=o)
    
plt.legend(loc='lower right')
plt.xlabel('Number of points')
plt.ylabel('Execution Time (s)');
_images/6e4d56b2e291a95d15b06790e6636674152f07110d1d9e39f739d8e38e91d0f7.png

Vlasov-Poisson system#

system for one species with a neutralizing background.

\[\begin{split} \frac{\partial f}{\partial t}+ v\cdot \nabla_x f + E(t,x) \cdot \nabla_v f = 0, \\ - \Delta \phi = 1 - \rho, E = - \nabla \phi \\ \rho(t,x) = \int f(t,x,v)dv. \end{split}\]
class VlasovPoisson:
    
    def __init__(self, xmin, xmax, nx, vmin, vmax, nv, p = 3, opt=None):
        
        # Grid
        self.nx = nx
        self.x, self.dx = np.linspace(xmin, xmax, nx, endpoint=False, retstep=True)
        self.nv = nv
        self.v, self.dv = np.linspace(vmin, vmax, nv, endpoint=False, retstep=True)
        
        # Distribution function
        self.f = np.zeros((nx,nv))
        
        self.p = p
        
        if opt :
            # Interpolators for advection
            self.cs_x = Advection(p, xmin, xmax, nx, opt)
            self.cs_v = Advection(p, vmin, vmax, nv, opt)
            
        # Modes for Poisson equation
        self.modes = np.zeros(nx)
        k =  2* np.pi / (xmax - xmin)
        self.modes[:nx//2] = k * np.arange(nx//2)
        self.modes[nx//2:] = - k * np.arange(nx//2,0,-1)
        self.modes += self.modes == 0 # avoid division by zero 
        
    def advection_x(self, dt):
        for j in range(self.nv):
            alpha = dt * self.v[j]
            self.f[j,:] = self.cs_x(self.f[j,:], alpha)
            
    def advection_v(self, e, dt):
        for i in range(self.nx):
            alpha = dt * e[i] 
            self.f[:,i] = self.cs_v(self.f[:,i], alpha)
            
    def compute_rho(self):
        rho = self.dv * np.sum(self.f, axis=0)
        return  rho - rho.mean()
            
    def compute_e(self, rho):
        # compute Ex using that ik*Ex = rho
        rhok = fft(rho)/self.modes
        return np.real(ifft(-1j*rhok))
    
    def run(self, f, nstep, dt):
        self.f = f
        nrj = []
        self.advection_x(0.5*dt)
        for istep in tqdm(range(nstep)):
            rho = self.compute_rho()
            e = self.compute_e(rho)
            self.advection_v(e, dt)
            self.advection_x(dt)
            nrj.append( 0.5*np.log(np.sum(e*e)*self.dx))
                
        return nrj

Landau Damping#

Landau damping - Wikipedia

\[ f(x, v, t=0) = \frac{1}{\sqrt{2\pi}} (1 + \epsilon \cdot cos(k_x \cdot x)) e^{-v^2/2} \]
from time import time

elapsed_time = {}
fig, axes = plt.subplots()
for opt in opts:
    
    # Set grid
    nx, nv = 32, 64
    xmin, xmax = 0.0, 4*np.pi
    vmin, vmax = -6., 6.
    
    # Create Vlasov-Poisson simulation
    sim = VlasovPoisson(xmin, xmax, nx, vmin, vmax, nv, opt=opt)

    # Initialize distribution function
    X, V = np.meshgrid(sim.x, sim.v)
    eps, kx = 0.001, 0.5
    f = (1.0+eps*np.cos(kx*X))/np.sqrt(2.0*np.pi)* np.exp(-0.5*V*V)

    # Set time domain
    nstep = 600
    t, dt = np.linspace(0.0, 60.0, nstep, retstep=True)
    
    # Run simulation
    etime = time()
    nrj = sim.run(f, nstep, dt)
    print(" {0:12s} : {1:.4f} ".format(opt.__name__, time()-etime))
    
    # Plot energy
    axes.plot(t, nrj, label=opt)

    
axes.plot(t, -0.1533*t-5.50)
plt.legend();
 bspline_fortran : 2.4461 
 bspline_pythran : 2.3331 
 bspline_cython : 3.1034 
 bspline_numba : 2.5918 
_images/dfeef464269ad6f480fe575b957f838ea105a62de0f246a2d701fa714581ce15.png
%%fortran --f90flags "-fopenmp" --extra "-lgomp" --link fftw3

module bsl_fftw

    use, intrinsic :: iso_c_binding
    implicit none
    include 'fftw3.f03'
    
    contains
    
   
    recursive function bspline(p, j, x) result(res)
    
        integer :: p, j
        real(8) :: x, w, w1
        real(8) :: res
     
        if (p == 0) then
            if (j == 0) then
                res = 1.0
                return
            else
                res = 0.0
                return
            end if
        else
            w = (x - j) / p
            w1 = (x - j - 1) / p
        end if
     
        res = w * bspline(p-1,j,x)+(1-w1)*bspline(p-1,j+1,x)
    
    end function bspline
   
    subroutine advection(p, n, delta, alpha, axis, df)
    
        integer, intent(in)     :: p
        integer, intent(in)     :: n
        real(8), intent(in)     :: delta
        real(8), intent(in)     :: alpha(0:n-1)
        integer, intent(in)     :: axis
        real(8), intent(inout)  :: df(0:n-1,0:n-1)
              
        !f2py optional , depend(in) :: n=shape(df,0)
     
        real(8),    allocatable :: f(:)
        complex(8), allocatable :: ft(:)
        real(8),    allocatable :: eig_bspl(:)
        real(8),    allocatable :: modes(:)
        complex(8), allocatable :: eigalpha(:)
        integer(8)              :: fwd
        integer(8)              :: bwd
     
        integer                 :: i
        integer                 :: j
        integer                 :: ishift
        real(8)                 :: beta
        real(8)                 :: pi 
              
        pi = 4.0_8 * atan(1.0_8)
    
        allocate(modes(0:n/2))
        allocate(eigalpha(0:n/2))
        allocate(eig_bspl(0:n/2))
        allocate(f(0:n-1))
        allocate(ft(0:n/2))
     
        do i = 0, n/2
           modes(i) = 2.0_8 * pi * i / n
        end do
      
        call dfftw_plan_dft_r2c_1d(fwd, n, f, ft, FFTW_ESTIMATE)
        call dfftw_plan_dft_c2r_1d(bwd, n, ft, f, FFTW_ESTIMATE)
     
        eig_bspl = 0.0   
        do j = 1, (p+1)/2
           eig_bspl = eig_bspl + bspline(p, j-(p+1)/2, 0.0_8) * 2.0 * cos(j * modes)
        end do
     
        eig_bspl = eig_bspl + bspline(p, -(p+1)/2, 0.0_8)
      
        !$OMP PARALLEL DO DEFAULT(FIRSTPRIVATE), SHARED(df,fwd,bwd)
        do i = 0, n-1
     
            ishift = floor(-alpha(i) / delta)
            beta   = -ishift - alpha(i) / delta
            eigalpha = (0.0_8, 0.0_8)
          
            do j=-(p-1)/2, (p+1)/2+1
               eigalpha = eigalpha + bspline(p, j-(p+1)/2, beta) * exp((ishift+j) * (0.0_8,1.0_8) * modes)
            end do     
            
            if (axis == 0) then
              f = df(:,i)
            else
              f = df(i,:)
            end if
   
            call dfftw_execute_dft_r2c(fwd, f, ft)
            ft = ft * eigalpha / eig_bspl / n
            call dfftw_execute_dft_c2r(bwd, ft, f)
           
            if (axis == 0) then
              df(:,i) = f
            else
              df(i,:) = f
            end if
  
        end do
        !$OMP END PARALLEL DO     
        
        call dfftw_destroy_plan(fwd)
        call dfftw_destroy_plan(bwd)
        deallocate(modes)
        deallocate(eigalpha)
        deallocate(eig_bspl)
        deallocate(f)
        deallocate(ft)
    
    end subroutine advection


end module bsl_fftw
%env OMP_NUM_THREADS=4
env: OMP_NUM_THREADS=4
from tqdm.notebook import tqdm
from scipy.fftpack import fft, ifft

class VlasovPoissonThreaded(VlasovPoisson):
    
    def advection_x(self, dt):
        alpha = dt * self.v
        bsl_fftw.advection(self.p, self.dx, alpha, 1, self.f)        
            
    def advection_v(self, e, dt):
        alpha = dt * e
        bsl_fftw.advection(self.p, self.dv, alpha, 0, self.f)
            
from time import time

elapsed_time = {}
fig, axes = plt.subplots()
# Set grid
nx, nv = 64, 64
xmin, xmax = 0.0, 4*np.pi
vmin, vmax = -6., 6.

# Create Vlasov-Poisson simulation
sim = VlasovPoissonThreaded(xmin, xmax, nx, vmin, vmax, nv)
# Initialize distribution function
X, V = np.meshgrid(sim.x, sim.v)
eps, kx = 0.001, 0.5
f = (1.0+eps*np.cos(kx*X))/np.sqrt(2.0*np.pi)* np.exp(-0.5*V*V)
f = np.asfortranarray(f)
# Set time domain
nstep = 600
t, dt = np.linspace(0.0, 60.0, nstep, retstep=True)

# Run simulation
etime = time()
nrj = sim.run(f, nstep, dt)
print(" elapsed time : {0:.4f} ".format(time()-etime))

# Plot energy
axes.plot(t, nrj, label='energy')

    
plt.legend();
 elapsed time : 0.2349 
_images/f80a7d7186d065eef43e51a06f1a023a6576bdd8330919b0c4dd674b29a65ce4.png