Juillet-Août 2023#
Bonjour, voici les nouvelles de la rentrée. N’oubliez pas le café Julia le 15 septembre à 10:00 et les Journées Julia et Optimisation du 4 au 6 octobre au CNAM Paris.
La France passe troisième au nombre d’utilisateurs derrière l’Allemagne et les Etats-Unis d’après les résultats du sondage annuel réalisé pour JuliaCon.
Julia est entré dans le top 20 du TIOBE Index qui classe les langages de programmation par popularité.
Il y a maintenant une centaine de nouveaux packages par mois donc vous ne voyez ici qu’une sélection personnelle. N’hésitez-pas à m’envoyer vos liens ou vous pouvez faire directement une PR sur pnavaro/NouvellesJulia.
Une information importante a été publiée cet été à propos de l’utilisation des threads. Je conseille vivement de lire cet article:
PSA: Thread-local state is no longer recommended
Billets de blog#
Packages#
AbstractNeuralNetworks.jl : Abstract data structures for the construction of neural networks.
ArviZ.jl : Exploratory analysis of Bayesian models.
AutoVectors.jl : Julia vectors whose first and last indices are any integers.
BioMarkovChains.jl : Representing biological sequences as Markov chains.
ChebyshevFiltering.jl : A package to perform large-scale sparse diagonalization.
CounterfactualExplanations.jl : A package for Counterfactual Explanations and Algorithmic Recourse in Julia.
CurveFitParameters.jl : Curve fitting problems.
DataFlowTasks.jl : Tasks which can keep track of how data flows through it.
Deneb.jl : API for creating Vega-Lite visualizations.
Diffractor.jl : Experimental next-generation, compiler-based AD system.
DomainColoring.jl : Domain colorings and checker plots of complex functions using smooth colors.
Eikonal.jl : Solvers for the Eikonal equation.
FloatTracker.jl : Library providing tracking of floating point errors through a program resources.
GaussianKDEs.jl : Gaussian Kernel Density Estimators.
GeometricMachineLearning.jl : Structure Preserving Machine Learning Models.
GradValley.jl : Lightweight package for Deep Learning.
HeterogeneousComputing.jl : Tools for heterogeneous computing.
IncompressibleNavierStokes.jl : Incompressible Navier-Stokes solver.
IPUToolkit.jl : Interface the Intelligence Processing Unit (IPU) by Graphcore.
JuliaTDA : Topological Data Analysis organization.
KinematicCoordinateTransformations.jl : Perform coordinate system transformations of position, velocity, acceleration, and jerk.
LanguageModels.jl : Load nanoGPT-style transformers.
LowRankMatrices.jl : Lightweight package that provides the low-rank matrix types that are used in LowRankApprox.jl.
MakiePublication.jl : Package for producing publication quality figures based on Makie.jl.
MoYe.jl : Layout Algebra on GPU.
MultilayerGraphs.jl : A package for the creation, manipulation and analysis of the structure, dynamics and functions of multilayer graphs.
MultivariateChebyshev.jl : Interpolation of functions using Chebyshev polynomials.
MulticomplexNumbers.jl : Package for representing multicomplex numbers and performing multicomplex algebra.
NormalizingFlows.jl : A normalizing flow library.
NUMA.jl : Tools for querying and controlling NUMA policies.
Parsers.jl : Fast parsing machinery for basic types.
PlotlyDocumenter.jl : Show plotly plots in Documenter.jl as static HTML.
ReferenceFiniteElements.jl : educational and lightweight package to define finite elements in the reference (quadrature space) configuration.
SemanticAST.jl : Semantic analysis for Julia source code.
SimpleChains.jl : Neural network for small problems on the CPU.
SimplePolynomialRing.jl : Polynomial ring realization.
SoleModels.jl : Symbolic modeling and learning.
SVDSubset.jl : Fast and memory-efficient implementation of svds algorithm.
TensorTrains.jl : Tensor Trains, mostly thought of as probability distributions.
TidierPlots.jl : Julia implementation of the ggplot2 R package.
TimeseriesTools.jl : A convenient package for working with time series as mathematical series, rather than date-indexed data structures.
VoronoiFVM.jl : Solution of nonlinear multiphysics partial differential equation systems using the Voronoi finite volume method.
Vidéos#
Abel Siqueira - Crash course on Julia Basics - Loop, function, types, Dict, indexing
Jakob Nissen - Minimise Julia’s Latency: Revise, PrecompileTools, and PackageCompiler
Jon Doucette - Ignite.jl: A Brighter Way to Train Neural Networks
Kyle Daruwalla - Intro to FluxML and Machine Learning in Julia
Francois-Xavier Coudert - CrystalNets: topology identification of crystalline materials
Tutoriels, Documentation#
Adrian Salceanu et al - Genie Dashboard showing a real-time simulation of the Lorenz equations
Guillaume Dalle et al - A series of blog posts on best practices for Julia development
Carsten Bauer - How to provide Julia to users on HPC clusters ?
Jakob Nybo Nissen - How to optimise Julia code: A practical guide
Pierre